翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lambek-Moser theorem : ウィキペディア英語版
Lambek–Moser theorem
In combinatorial number theory, the Lambek–Moser theorem is a generalization of Beatty's theorem that defines a partition of the positive integers into two subsets from any monotonic integer-valued function. Conversely, any partition of the positive integers into two subsets may be defined from a monotonic function in this way.
The theorem was discovered by Leo Moser and Joachim Lambek. provides a visual proof of the result.〔For another proof, see 〕
==Statement of the theorem==
The theorem applies to any non-decreasing and unbounded function ''f'' that maps positive integers to non-negative integers. From any such function ''f'', define ''f''
* to be the integer-valued function that is as close as possible to the inverse function of ''f'', in the sense that, for all ''n'',
:''f''(''f''
*(''n'')) < ''n'' ≤ ''f''(''f''
*(''n'') + 1). It follows from this definition that ''f''
*
* = ''f''.
Further, define
:''F''(''n'') = ''f''(''n'') + ''n'' and ''G''(''n'') = ''f''
*(''n'') + ''n''.
Then the result states that ''F'' and ''G'' are strictly increasing and that the ranges of ''F'' and ''G'' form a partition of the positive integers.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lambek–Moser theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.